MXCHIP® 智能硬件解决方案提供商

Track Number: MXCHIP Co., Ltd

Version: 1.1 2017.9.11

Category: Application Note Open

EML3047 客户设计注意事项

摘要 (Abstract)

本文档列举了客户在使用 MXCHIP 模块设计产品过程中,各个阶段需要注意的事项。请客户先熟悉本文档,提前考虑在设计,生产,烧录固件,测试阶段可能出现的问题并有效规避,以达到快速量产的目的。

获取更多帮助(More Help)

登录上海庆科官方网站: < http://mxchip.com/>, 获取公司最新产品信息。

登录 MiCO 开发者论坛: <http://mico.io/>, 获取更多 MiCO 最新开发资料。

登录 FogCloud 开发者中心: < http://easylink.io/>, 获取更多 FogCloud 云开发文档。

版权声明(Copyright Notice)

未经许可,禁止使用或复制本手册中的全部或任何一部分内容,这尤其适用于商标、机型命名、零件号和图形。

版本记录

日期	版本	更新内容
2017-9-7	V1.0	初始版本
2017-9-11	V1.1	更新 AT 指令部分内容以及格式

目录

EM	L3047	客户设计注意事项	1
版2	卜记录 .		1
1.	概述.		4
2.	硬件i	设计注意事项	6
	2.1	机械尺寸	6
	2.2	参考封装设计	6
	2.3	DC 电源设计	7
	2.4	参考电路设计	
	2.5	RF 设计	
		2.5.1 外接天线模块的天线接头	9
		2.5.2 RF PIN OUT	
	2.6	ESD 设计	
3.	烧录[固件及入库检测方法	
	3.1	准备工作	
	3.2	烧录模式开关设置	12
	3.3	系统连接	13
	3.4	串口选择	
	3.5	J-FLASH 安装	13
	3.6	J-FLASH 配置	14
	3.7	固件烧录	15
	3.8	AT 指令	16
		3.8.1 通用指令	17
		3.8.2 基本指令	18
	3.9	测试程序	19
	3.10	重要声明	19
4.	SMT	注意事项	21
	4.1	开钢网注意事项	21
	4.2	回流焊炉温曲线图	21
5.	服务	与支持	23
		图目录	
	图 1.	1.模块外观图	4
	图 1.	.2 硬件框图	5
	图 2	1 机械尺寸俯视图	6
	图 2	.2 机械尺寸侧视图	6

冬	2.3 DIP 封装	7
冬	2.4 SMT 推荐封装	7
冬	2.5 电源转换部分	8
冬	2.6 USB 转串口调试参考电路	8
冬	2.7 5V UART 转 3.3V UART 转换参考电路	9
冬	2.8 LORA 参考设计电路	9
冬	2.9 外接天线接头尺寸	10
冬	1	
	2.11 四层板(1.0mm)阻抗计算	
冬	3.1 开发板开关设置	13
冬	3.2 电源指示灯	13
冬	3.3 设备管理器中名称	13
冬	3.4 安装 J-Flash	14
冬	3.5 J-Flash 桌面图标	
冬	3.6 Target Interface 配置	15
	3.7 MCU 配置	
	3.8 Production 设置	
	3.9 输入地址	
冬	3.10 J-Flash 烧录界面	
冬	4.1 波峰焊过炉方向	21
冬	4.2 二次回流焊炉温曲线	22
	表目录	
表	2.1 双层板(1.0mm)50Ohm 阻抗层压模型	10
表	2.2 四层板(1.0mm)50Ohm 阻抗层压模型	.11
表	3.1 入库检测设备清单	12
表	3.2 烧录测试软件下载地址列表	12

[Page 4]

1. 概述

本文档列举了客户在使用 MXCHIP 模块设计产品过程中,各个阶段需要注意的事项。请客户先熟悉本文档,提前考虑在设计,生产,烧录固件,测试阶段可能出现的问题并有效规避,以达到快速量产的目的。

适用模块型号:

EML3047 系列

需要注意的阶段:

- 硬件设计
- 烧录固件
- 测试固件
- · 产品 SMT 阶段
- 在线升级

模块基本特点:

- · 每个模块都有全球唯一 MAC ID
- · IPEX 天线、弹簧天线或 Pin 脚天线三种型号
- · 支持 LoRaWAN Class A/B/C 协议以及私有协议,
- · 工作环境温度: -40℃ to +85℃

EML3047 正面图

图 1.1.模块外观图

EML3047 型号列表

模块型号	天线类型	说明
EML3047-E	IPEX 连接天线	默认
EML3047-S	弹簧天线	可选
EML3047-B	RF PIN OUT	可选

[Page 5]

硬件原理框图

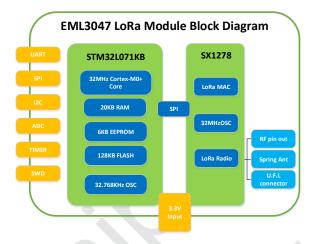


图 1.2 硬件框图

2. 硬件设计注意事项

2.1 机械尺寸

EML3047 机械尺寸图(单位: mm)

图 2.1 机械尺寸俯视图

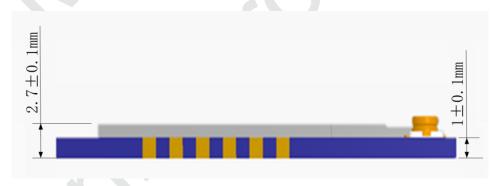


图 2.2 机械尺寸侧视图

2.2 参考封装设计

下图是 MXCHIP 建议的在设计底板 PCB 时模块的参考封装尺寸图,阻焊开窗和焊盘大小一致。 EML3047 采用 DIP 与邮票孔两种接口设计方案。

阻焊开窗和焊盘大小一致, SMT 建议钢网厚度为 0.12mm-0.14mm, 锡膏建议使用 SAC305, 无铅。

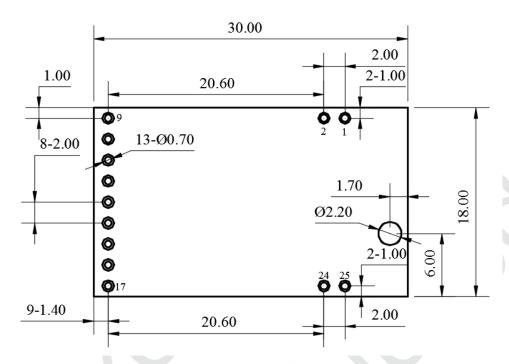


图 2.3 DIP 封装

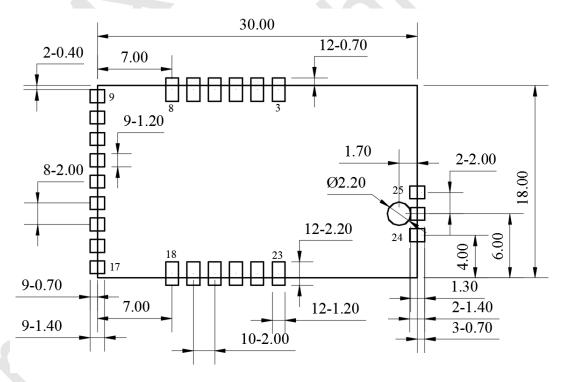


图 2.4 SMT 推荐封装

2.3 DC 电源设计

模块峰值电流 130mA 左右,MXCHIP 推荐使用最大输出电流 300mA 以上的 DC/DC 电源芯片,相对于 LDO 来说,DC/DC 更可以体现出模块低功耗的优势。

对于 DC/DC 电源芯片的使用,除了输出电压(3.3V)和最大电流(300mA)的要求外,还要特别注

意布线,器件尽量紧凑,输入和输出的地要求良好的连接,反馈信号远离电感和肖特基二极管,具体要求参照相应 DC/DC 电源芯片的 Datasheet。

对于 LDO 的使用,要注意最大输出电流(300mA)和散热。例如,从 5V 降到 3.3V,压降为 1.7V,如果电流为 130mA,那么 LDO 上转化为热的功耗为 1.7V x 130mA = 221mW,LDO Datasheet 上有一项参数为 Power Dissipation,所选的此项参数必须大于 221mW(其他输入电压按照 此方法计算)

只有在前期充分考虑电源的设计,才能减小最终产品在实际测试中出问题的概率。

2.4 参考电路设计

EML3047 用户参考电路如下:

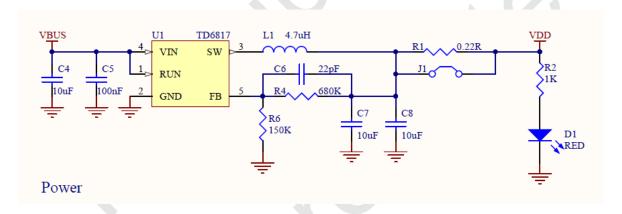


图 2.5 电源转换部分

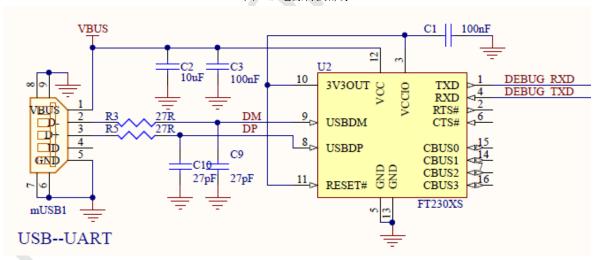


图 2.6 USB 转串口调试参考电路

[Page 9]

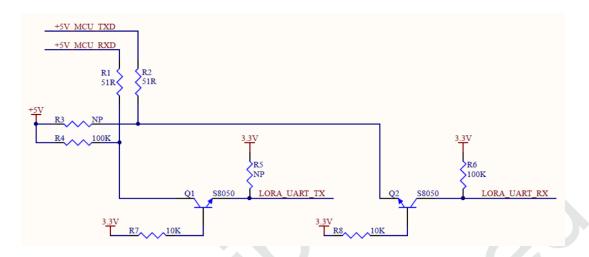


图 2.7 5V UART 转 3.3V UART 转换参考电路

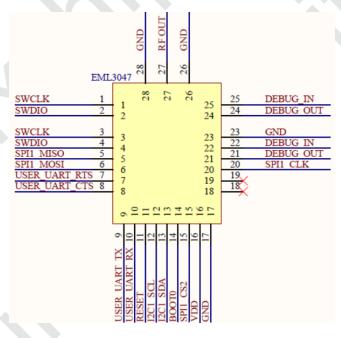


图 2.8 LORA 参考设计电路

2.5 RF 设计

2.5.1 外接天线模块的天线接头

下图是模块上外接天线接头的尺寸,选择天线的接头时要和供应商确认接头是否吻合。

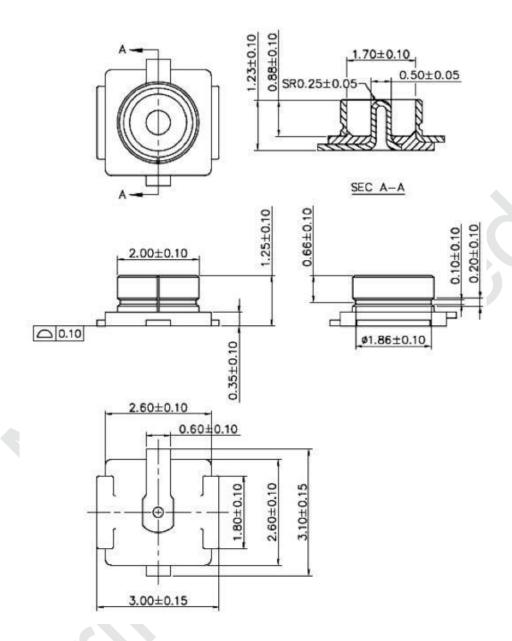


图 2.9 外接天线接头尺寸

2.5.2 RF PIN OUT

PIN27 为 RF PIN OUT,可以引到用户的主板上,PCB Layout 时要保证 50Ohm±10%的阻抗。 双层板(1.0mm)50Ohm 阻抗层压模型如表 2.1 所示,阻抗计算如图 2.10 所示。

表 2.1 双层板 (1.0mm) 50Ohm 阻抗层压模型

				厚度 (mm)	单端阻抗50 ohm
L1			Hoz(完成1oz)	0. 0175	21mi1
	core	0. 9mm		0. 9	
L2			Hoz	0. 0175	

Application Note [Page 11]

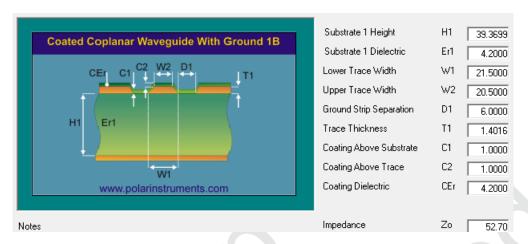


图 2.10 双层板 (1.0mm) 阻抗计算

四层板(1.0mm)500hm 阻抗层压模型如表 2.2 所示,阻抗计算如图 2.11 所示。

			厚度 (mm)	单端阻抗50 ohm
L1		Hoz(完成1oz)	0. 0175	6mil
	pp 3313*1		0. 1	
L2		Hoz	0. 0175	
	core 0.66mm		0. 66	
L3		Hoz	0. 0175	
	pp 3313*1		0. 1	
Τ. /		II(⇒ #1\	0.0175	

表 2.2 四层板 (1.0mm) 50Ohm 阻抗层压模型

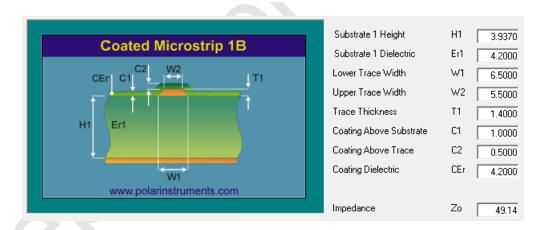


图 2.11 四层板 (1.0mm) 阻抗计算

2.6 ESD 设计

模块 ESD 等级:人体模型 (HBM)为 2000V,器件模型 (CDM)为 500V,如果产品有更高的 ESD 要求,就要特别注意,所有可能与外界接触的引脚,如连接到 USB 座、SD 卡槽等这些接插件的,都要预留 ESD 保护器件的位置。

如果模块不是直接焊接或插到板子上,而是通过外拉引线来工作,就要注意 EMI 问题,最好用屏蔽 线连接,或者板上预留共模扼流圈的位置。

3. 烧录固件及入库检测方法

3.1 准备工作

设备清单如表 3.1

表 3.1 入库检测设备清单

设备	数量
PC 电脑	1 (台)
烧录模块的治具	1 (台)
EML3047 开发底板	1 (块)
Micro USB	1 (根)
烧录软件工具	1 (台)
测试软件工具	1 (台)

烧录和测试应用软件下载地址参见表 3.2。

表 3.2 烧录测试软件下载地址列表

软件名称	功能
JLink_Windows_V600i	烧录
Sscom5	测试
CP210x_VCP_Windows	USB 驱动

烧录固件由庆科 FAE 或客户确认下发,本教程采用"Lora_1.1.3.bin"固件演示。

3.2 烧录模式开关设置

EML3047 采用工装烧录固件,工装如图 3.1 所示。

图 3.1 开发板开关设置

3.3 系统连接

模块治具通过 usb 数据线连接至 EML3047 开发板底板,此时底板上红灯 D1 常亮。

图 3.2 电源指示灯

3.4 串口选择

在设备管理器中,找到 EML3047 底板连接至 PC 的 COM 口号,例如图 3.3 中为 COM10:(注意: 串口号必须使用 Enhanced COM Port)

Silicon Labs Dual CP210x USB to UART Bridge: Enhanced COM Port (COM10)

Silicon Labs Dual CP210x USB to UART Bridge: Standard COM Port (COM3)

图 3.3 设备管理器中名称

3.5 J-Flash 安装

解压"JLink_Windows_V600i",并执行安装"Setup_JLink_V600i.exe",勾选快捷方式。直到完成安装。

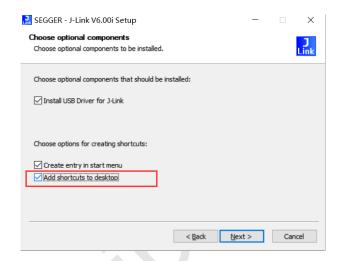


图 3.4 安装 J-Flash

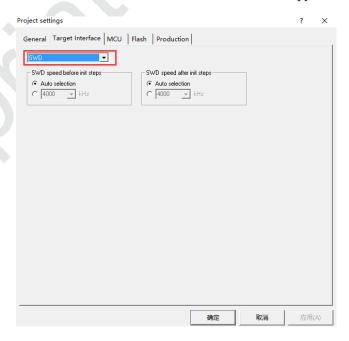

安装完成后桌面上可以找到"JFlash V6.00i"快捷方式,点击打开。

图 3.5 J-Flash 桌面图标

3.6 J-Flash 配置

作如下配置,使用快捷键"ALT+F7",或者"打开"Options"点击"project settings"。Target Interface 里面选择"SWD",MCU 中选择"ST STM32L071KB", Production 中勾选"Start application"。

图 3.6 Target Interface 配置

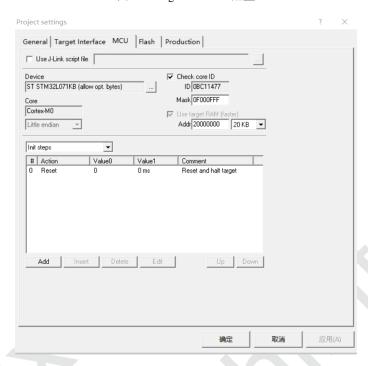


图 3.7 MCU 配置

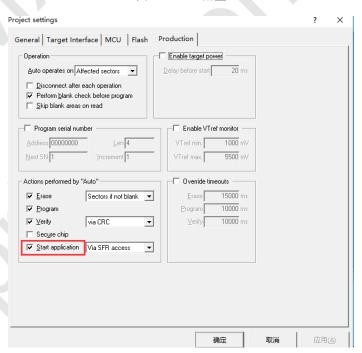


图 3.8 Production 设置

配置完成,点击"确定"即可,建议保存工程,再次烧录可不需再次设置。

3.7 固件烧录

将需要烧写的"Lora 1.1.3.bin"文件拖入 J-Flash 工程中, 跳出地址框, 手动输入烧录起始地址"8000000"。

图 3.9 输入地址

J-Flash 烧录界面: 使用快捷键"F7",或者 Target 目录下点击"AUTO", J-Flash 则开始烧录.

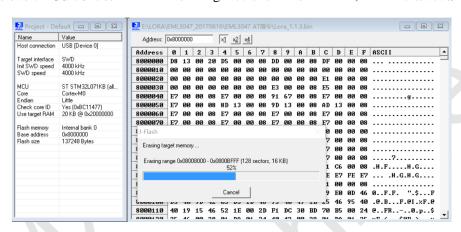


图 3.10 J-Flash 烧录界面

3.8 AT 指令

AT 命令基本格式:

表 3.3 AT 命令基本格式

符号	描述
AT	AT 指令,都以 AT 开头,不区分大小写
+CMD	+CMD 为命令
=	说明当前为设置操作
?	说明当前为读取操作
,	参数分隔符,可能带多个参数
<cr><lf></lf></cr>	\r\n

● AT+<CMD>?: 获取<CMD>的帮助

● AT+<CMD> : 执行<CMD>

● AT+<CMD>=<value> : 设置<CMD>的参数, <value>为参数值

◆ AT+<CMD>=? : 获取设置参数 所有命令以<CR>或<LF>结尾。

每个命令发送后都会有返回结果,如下所示:

● OK: 命令执行成功

● AT_ERROR: 命令错误

● AT_PARAM_ERROR: 命令参数错误

● AT_BUSY_ERROR: 模块正在处理其他命令

● AT_TEST_PARAM_OVERFLOW: 参数长度过长

● AT_NO_NETWORK_JOINED: 尚未加入 LoRaWAN 网络

AT_RX_ERROR: 命令接收错误

返回结果的格式: <CR><LF><结果><CR><LF>

3.8.1 通用指令

(1) AT: 连接状态监测

该命令用于检测主机与模块间的串口连接状态。

表 3.4 AT 连接检测

命令	输入参数	返回值	返回结果
AT	-	-	OK

(2) AT?: 帮助命令

获取所有支持的命令。

表 3.5 帮助命令

命令	输入参数	返回值	返回结果
AT?	-	AT+ <cmd>: run <cmd> AT+<cmd>=<value>: set the value AT+<cmd>=?: get the value</cmd></value></cmd></cmd></cmd>	OK

(3) ATZ: 复位命令

复位模块。

表 3.6 复位命令

命令	输入参数	返回值	返回结果
ATZ?	-	ATZ: triggers a reset of the MCU	OK
ATZ	-	无返回值,模块复位	

3.8.2 基本指令

(1) AT+VER: 固件版本

用于查询当前固件版本。

表 3.7 查询固件版本

命令	输入参数	返回值	返回结果	
AT+VER?	-	AT+VER: get the version of the FW	OK	
AT+VER=?	-	固件版本号:LoRaWAN 版本	OK	
示例: AT+VER=?	-	1.0.0;1.0.2	ОК	

(2) AT+TCONF: 设置或读取射频参数

表 3.8 设置或读取射频参数

命令	功能	输入参数	返回值	返回结果
AT+TCONF=?	读取射频参数		Mode=LORA Freq= 470000 kHz Power= 14 dBm Bandwidth= 125 kHz SF= 12 CR= 4/5 LNA State =1 PA Boost State =1	OK
AT+TCONF=	设置射频参数	1:470000:14:125:12:4/5:1:1 参数说明: 1: 射频调制模式, 0: FSK, 1: LORA 470000: 频率, 单位 kHz, 范围 470000~510000 14: 发射功率, 单位 dBm, 范围: 0~20dBm 125: 带宽, 单位 kHz, 取值 125, 250, 500 12: 扩频因子, 范围 7~12 4/5: 码率, 取值 4/5, 4/6, 4/7, 4/8 1: LNA 开关, 1 打开, 0 关闭 1: PA BOOST 开关, 1 打开, 0 关闭		ОК

(3) T+TTONE(发射 CW 信号)

表 3.9 发射 CW 信号

命令 功能	输入参数	返回值	返回结果
----------	------	-----	------

AT+TTONE	启动发送	-	TX Test	OK
AT+TOFF	停止发送	-	Test Stop	OK

(4) AT+TRSSI: 射频接收测试

表 3.10 射频接收测试

命令	功能	输入参数	返回值	返回结果
AT+TRSSI	启动接收	-	RX Test LNA is OFF	ОК
AT+TOFF	停止接收	• • •	RSSI=-94dBm Test Stop	OK

(5) AT+TRLRA: LoRa 模式接收测试

表 3.11 LoRa 模块接收测试

命令	功能	输入参数	返回值	返回结果
AT+TRLRA	启动接收		LNA is OFF (如果接收到数据,会输 出接收包的计数值, RSSI, SNR)	OK
AT+TOFF	停止接收		Test Stop	OK

(6) AT+TTLRA: LoRa 模式发包测试

表 3.12 LoRa 模块发包测试

命令	功能	参数说明	返回值	返回结果
AT+TTLRA=100	启动发包	100: 总发包数	-	OK

具体 AT 指令的使用请参照"LoRaWAN 模块 AT 指令使用手册.pdf"。

3.9 测试程序

将 EML3047 模块的用户串口连接至 PC, 打开串口调试工具 sscom5, 设置串口波特率: 9600, 数据位: 8bit, 停止位: 1bit, 校验位: 无, 通过 AT 指令验证模块是否正常工作。

3.10 重要声明

MXCHIP有义务保证每批次交给客户的模块没有质量问题。

如果客户在抽检中发现模块有问题,有权利要求 MXCHIP 及时换货。

如果客户没有做入库检测,导致模块焊接到底板上后才发现问题,MXCHIP 只负责赔偿模块部分。

MXCHIP 有义务帮助客户在固件开发中解决各种技术问题,但不会保留使用任何客户的 MVA/bin 档。客户有义务将固件开发中的各个固件版本记录下来,并在最终生产前按需求烧录对应固件版本。

4. SMT 注意事项

4.1 开钢网注意事项

建议钢网厚度: 0.12mm(0.1~0.15mm),激光打磨开孔。建议锡膏: 无铅锡膏 SAC305。

下图为模块建议钢网尺寸图,焊盘开孔向外延伸 0.15mm, 能增强爬锡能力; 如果 SMT 线没有 AOI 检测,通过肉眼也能检查模块是否放正,降低虚焊的风险。设计 PCB 时建议助焊层按此设计:

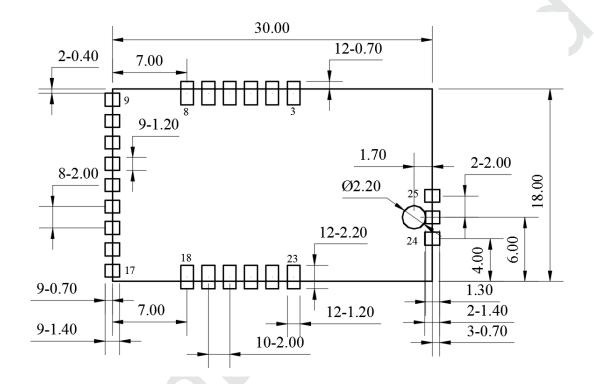


图 4.1 波峰焊过炉方向

4.2 回流焊炉温曲线图

下图为建议回流焊炉温曲线图,按此温度曲线图控制炉温能够降低虚焊的风险。

回流焊次数≤2 次

峰值温度: <250 C

[Page 22]

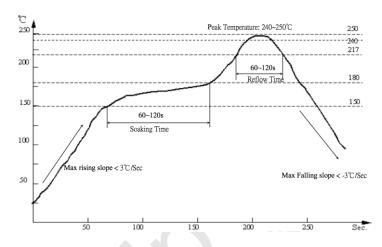


图 4.2 二次回流焊炉温曲线

5. 服务与支持

如需技术支持或产品咨询,请在办公时间拨打电话咨询上海庆科信息技术有限公司。

办公时间:

星期一至星期五 上午: 9:00~12:00, 下午: 13:00~18:00

网址 : http://mxchip.com/

联系电话: +86-21-52655026

联系地址:上海市普陀区金沙江路 2145 弄 5 号楼 9 楼

邮编 : 200333

Email : sales@mxchip.com