MXCHIP® 智能硬件解决方案提供商

HED Documentation Working Group (HDWG)

Andy Liu

Track Number: MXCHIP Co., Ltd

Version: 1.1 2017.7.3

Category: Reference Manual Open

MiCOKit 硬件手册

摘要 (Abstract)

本文档主要描述 MiCOKit 系列开发套件的硬件组成及各功能模块电路原理图,

旨在为 MiCO-IoT 物联网开发者提供与硬件相关的技术参考。

适用对象(Suitable Readers)

本文适合 MiCOKit-3239 评估板以及相关扩展板,旨在让开发者使用 EMW3239 时参考。

版本更新说明

日期	修改人	版本	更新内容	
2017-6-29	Andy Liu	V1.0	1. 初始版本	
2017-7-3	杜松	V1.1	增加第三章 MiCOKit-3239 详解内容	

目 录

Mi	COKit ³	硬件手册	1
版	本更新 说	兑明	1
1.	MiCC)Kit 系列开发套件概述	4
	1.1.	硬件	4
	1.2.	软件	5
	1.3.	开发者支持	
2.	MiCO)Kit-3239 主板详解	6
	2.1.	电源	7
	2.2.	USB 转 UART	7
	2.3.	Wɪ-Fɪ 模块型号	
		2.3.1 MiCOKit-3239 之 Wi-Fi 模块	8
	2.4.	LED 指示灯	9
	2.5.	运行状态选择	9
	2.6.	按键	10
	2.7.	JTAG 调试接口	10
	2.8.	Arduino 接口	11
	2.9.	电路图	12
3.	MiCC)Kit-3239 扩展板详解	14
	3.1.	OLED 显示屏	15
	3.2.	RGB 三色 LED	15
	3.3.	环境传感器(选配)	16
	3.4.	九轴运动传感器(选配)	17
	3.5.	苹果认证芯片(选配)	17
	3.6.	距离、光照传感器	18
	3.7.	温湿度传感器	19
	3.8.	红外反射开关	19
	3.9.	光照传感器	
	3.10.	微型直流电动机	20
	3.11.	标准 ARDUINO 接口	21
	3.12.	ARDUINO 传感器接口	21
	3.13.	UART 接口	22
冬	目录		
بحر		1.57.00/2020 亚华东州	
		1 EMW3239 开发套件	
	图 2.	1 主板功能模块示意图	6
	图 2.	2 电源电路原理图	7

	图 2.3 USB 转 UART 部分电路原理图	8
	图 2.4 USB 转出来的串口	8
	图 2.5 EMW3239 模块	9
	图 2.6 LED 指示灯原理图	9
	图 2.7 按键部分原理图	10
	图 2.8 JTAG 接口部分原理图	11
	图 2.9 Arduino 接口部分原理图	11
	图 3.1 MiCOKit 扩展板功能图	14
	图 3.2 OLED 显示屏电路原理图	
	图 3.3 RGB 驱动电路原理图	16
	图 3.4 P8913 驱动时序图	
	图 3.5 环境传感器电路原理图	
	图 3.6 九轴运动传感器电路原理图	17
	图 3.7 苹果 CP 芯片电路原理图	
	图 3.8 距离、光照检测电路原理图	
	图 3.9 温湿度电路原理图	19
	图 3.10 DHT11 时序图	
	图 3.11 红外反射电路原理图	
	图 3.12 光照传感器电路原理图	20
	图 3.13 直流电机电路原理图	21
	图 3.14 扩展板 Arduino 电路原理图	21
	图 3.15. Arduino 传感器接口电路原理图	21
	图 3.16 UART 接口电路原理图	22
表目	录	
	表 2.1 工作模式选择	10

1. MiCOKit 系列开发套件概述

MiCOKit EMW3239 是上海庆科(MXCHIP)推出的基于物联网操作系统(MiCO)系列开发套件,可用于物联网、智能硬件的原型机开发。开发套件提供一个开箱即用的智能硬件解决方案,方便验证用户的软件和功能,使产品可以快速、安全地连接至云服务平台和手机端,缩短研发周期,迅速推向市场。

MiCOKit 主要特点:

- 基于物联网操作系统 MiCO, 高效、易用、安全;
- 提供完整 Demo 工程和 MiCOKit SDK;
- 套件由硬件、软件和开发者论坛等组成,包括 MiCOKit 开发板和快速连接到云服务的演示应用程序, 使用智能手机或平板电脑就能进行安全控制和操作。
- 公有云平台对接:资源丰富,支持阿里智能云、 Ayla、 FogCloud、GizWits、Arrayent 、苏宁智能云 平台服务等;
- 开发者无需套接字编程、无需开发网络代码和学习云端连接。

套件外观如图 1.1 所示。

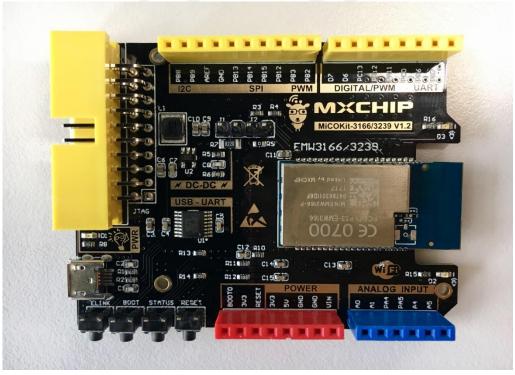


图 1.1 EMW3239 开发套件

1.1.硬件

MiCOKit 系列开发套件采用双板层叠结构。主板是带 MCU 和 Wi-Fi 的 Arduino 标准板。主板有多种型号,分别-P 与-E 模块,默认-P 产品(-P 为板载天线,-E 需要 IPEX 外接),MiCOKit-3239:包含底板和扩展板;MiCOKit-base-3239:仅底板。

1.2.软件

MiCOKit 开发套件使用 MiCO 物联网操作系统,提供根据 IoT 应用特点抽象的应用程序框架,用户可以像传统 51 单片机那样非常方便地进行智能硬件产品开发。

1.3.开发者支持

- 1. MiCOKit 系列开发套件硬件和软件开发资料获取,可至 MiCO 开发者官方网站: http://mico.io/。包括:
 - (1) 论坛(http://bbs.mico.io/) 开发者可在此进行技术问题的提问,分享与讨论;
 - (2) 学院(http://edu.mico.io/) 开发者可在此获取相关开发视频内容;
 - (3) 开发者中心(<u>http://developer.mico.io/</u>) 开发者可在此获取最新发布的 SDK 及 IDE,中间件及技术开发资料。
- 2. 上海庆科模块发布官方网站: http://mxchip.com/。
- 3. 上海庆科 FogCloud 云平台官方网站: https://v2.fogcloud.io/

2. MiCOKit-3239 主板详解

MiCOKit 系列开发板硬件采用层板结构。单主板是带 MCU 和 Wi-Fi 模块。

- 支持 802.11b/g/n 标准, 集 Cortex-M4 微控制器, WLAN MAC/Baseband/RF 于一体
- 包含 256KB SRAM/ 3MB FLASH 配置
- Wi-Fi & BT4.1 嵌入式模块
- 工作电压: DC 5.0 V
- Wi-Fi 相关特性
 - 支持 802.11b/g/n 标准
 - 支持 Station, Soft AP, Station+Soft AP
 - 支持 EasyLink, Alink
 - PCB 天线或 IPEX 天线可选
- 外设:
 - 支持高速 UART, I2C, SPI, PWM, I2S, ADC 以及多个 GPIO 口

MiCOKit 主板的接插件采用色彩来区分功能,黄色插件是数字信号接口,蓝色插件是模拟信号接口,红色插件是电源接口,如图 2.1 所示。

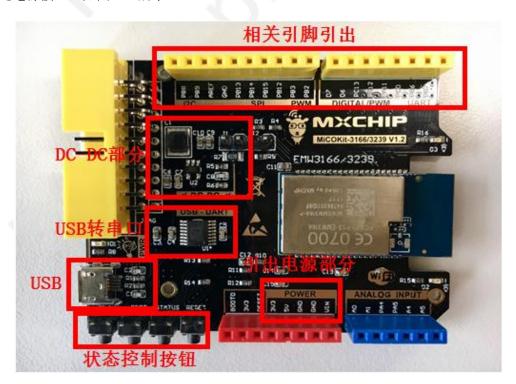


图 2.1 主板功能模块示意图

2.1.电源

MiCOKit 采用 USB 接口通信和供电的模式,板载一个 3.3V 的高效率 DC-DC,型号为 TD6817。TD6817是一种高效率 (96%)、恒定频率 (1.5MHz)单片同步降压稳压器,器件有输出电压可调版本和 1.5V、1.8V 固定电压输出版本,输出电流最大 2A,但是静态损耗只有 20uA,2.5V 至 5.5V 的输入电压范围使 TD6817非常适用于单节锂离子电池供电的应用。开关频率在内部设置为 1.5MHz,方便使用小型表面贴装电感器和电容器。器件具有过温保护功能,内部同步开关提高了效率并省去了外部肖特基二极管。

本部分的电路原理如图 2.2 所示。当电源工作正常时,电源指示灯 D1 会点亮。设计有电流测试功能,板载采用电阻 R7 $(0.22\,\Omega)$,通过 J1 插座可以检测板子的电流,进而计算出功耗。

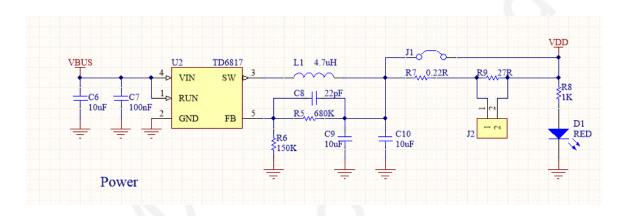


图 2.2 电源电路原理图

2.2.USB 转 UART

为了方便用户使用和调试,MiCOKit 的主板上配有一个 USB 转 UART 的功能,选用的芯片是 FT230X,是一款 USB 到 UART/FIFO 的转换电路,主要功能有:

- 满握手信号、MODEM 接口信号,硬件及 Xon/Xoff 流量控制;
- 接口支持 UART 7 / 8 Bit 数据位、1 / 2 停止位、奇偶校验、Mark/Space 校验或无校验;
- 通信速率: 300-3M (TTL), 512 Byte 传输缓冲区;
- 集成了电平转换器, I/O 口电平支持 5V-3.3V 伏电平逻辑;
- 完全兼容 USB 2.0;
- 虚拟串口的驱动程序,支持: Windows 8 32,64-bit, Windows 7 32, 64-bit, Windows Vista and Vista 64-bit, Windows XP and XP 64-bit, Server 2003, XP and Server 2008, Windows XP Embedded, Windows CE 4.2, 5.0 and 6.0, Mac OS-X, Linux 3.2 and greater, Android 等。
- 无铅 SSOP16 和 QFN16 封装。

这部分的电路原理如图 2.3 所示。

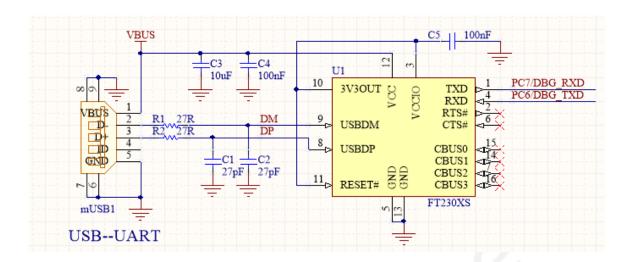


图 2.3 USB 转 UART 部分电路原理图

套件通过 USB 和 PC 链接,安装驱动后,PC 端口就多出来一个串口,如图 2.4 所示。用户可以通过串口工具或者超级终端实时监测调试过程。

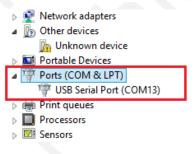


图 2.4 USB 转出来的串口

2.3.Wi-Fi 模块型号

MiCOKit 采用 Wi-Fi 模块不同注意区分 EMW3239-P 和 EMW3239-E。

2.3.1 MiCOKit-3239 之 Wi-Fi 模块

本款 MiCOKit 采用的是上海庆科的 EMW3239 Wi-Fi 模块, EMW3239 是单 3.3V 供电的 Wi-Fi & BT4.1 嵌入式模块, 包含最高主频 100MHz 的 Cortex-M4 MCU, 和 Wi-Fi+BT 射频芯片。拥有 256KB SRAM, 1MB 片内 Flash 和 2MB SPI Flash,以及丰富的外设接口供各种 Wi-Fi&BT 设备使用。获取该模块的详细信息请登录上海庆科网模块产品页面。

[Page 9]

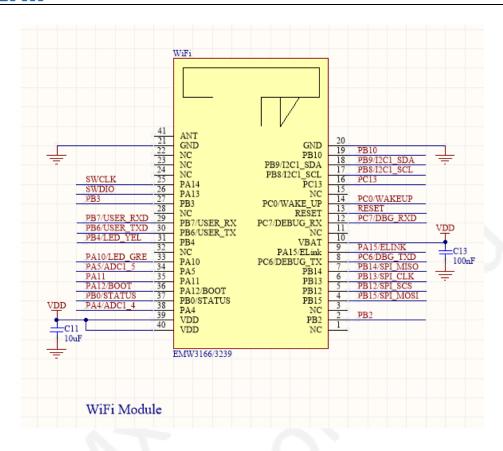


图 2.5 EMW3239 模块

2.4.LED 指示灯

为了方便用户了解程序的执行情况和套件的工作状态, 主板上有 3 个 LED 指示灯 D1、D2 和 D3。Demo 程序默认 D1 为电源指示灯, D2 为系统指示灯, D3 为射频指示灯。

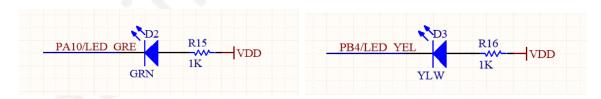


图 2.6 LED 指示灯原理图

2.5.运行状态选择

为了方便用户调试,主板上设计了 4 个控制运行状态的摁键开关,比如:将 BOOT 摁住不放状态,则上电启动就会自动进入 Bootloader 模式。模式选择见

表 2.1 工作模式选择。

0.0	~		®
		_	

ВООТ	STATUS	ELINK	FUNCTION
Н	/	/	NORMAL WORK
L	Н	L	ATE
L	L	Н	QC
L	Н	Н	BOOTLOADER

表 2.1 工作模式选择

2.6.按键

MiCOKit 主板上有 4 个按键,靠近板子的左下,侧面按压。一个是 ELINK 按键;一个 BOOT 按键;还有一个是 RESET,还有一个是 STATUS,平时可以当用户按键,这部分的原理图如图 2.7 所示。

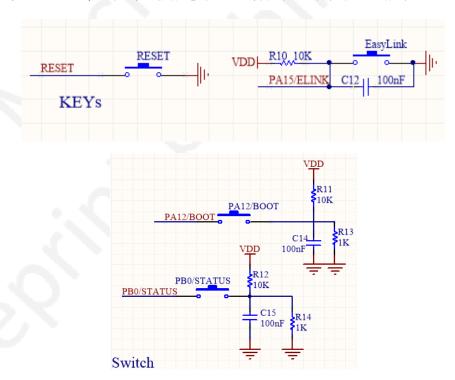


图 2.7 按键部分原理图

2.7.**JTAG** 调试接口

MiCOKit 支持标准 JTAG(20PIN)调试接口,可以方便连接 J-LINK 或者 U-LINK2 等调试工具,这部分的原理图如图 $2.8~\rm fm$ 示。

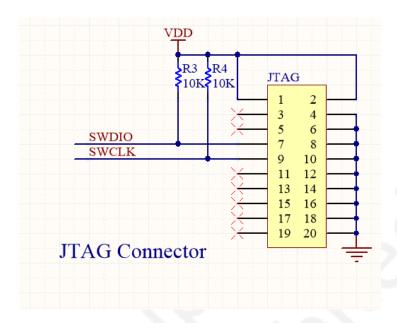


图 2.8 JTAG 接口部分原理图

注意:

由于 EMW3239 的 IO 所限, JTAG 接口只支持 SWD 调试模式, JLINK 仿真调试下载时请正确选择。

2.8.Arduino 接口

MiCOKit 支持标准的 Arduino 接口,可以方便地插接各种 Arduino 接口的扩展板,这部分的原理图如图 2.9 所示。

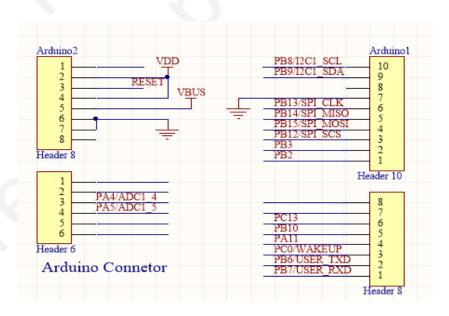
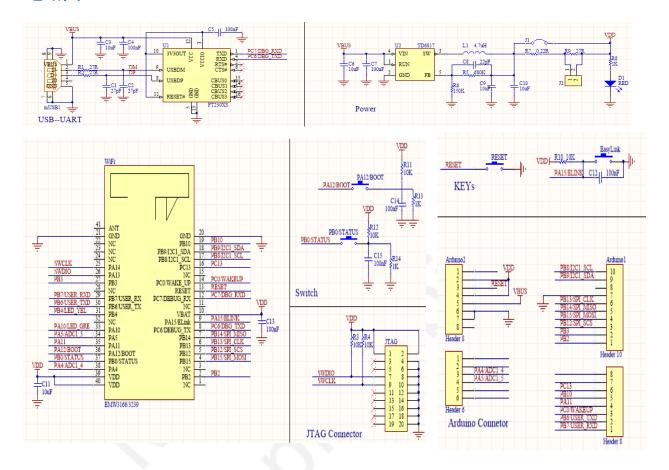
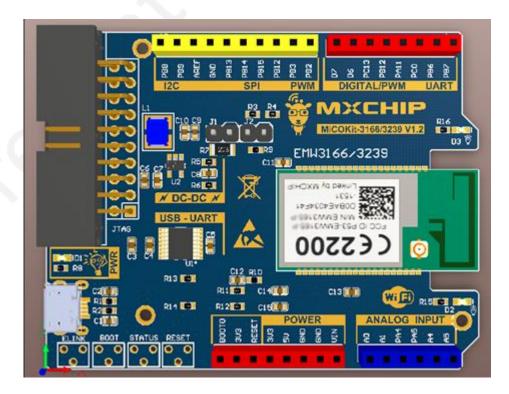
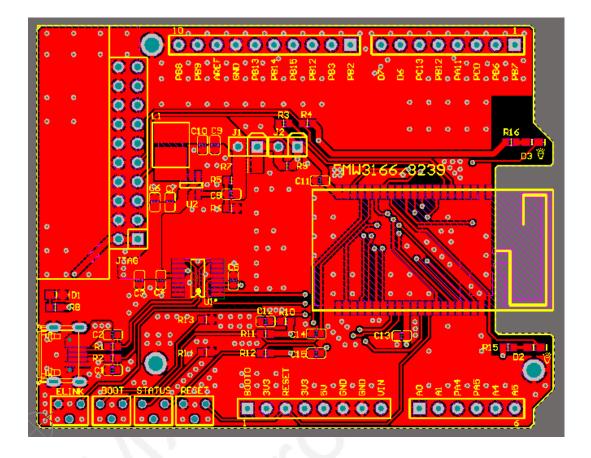
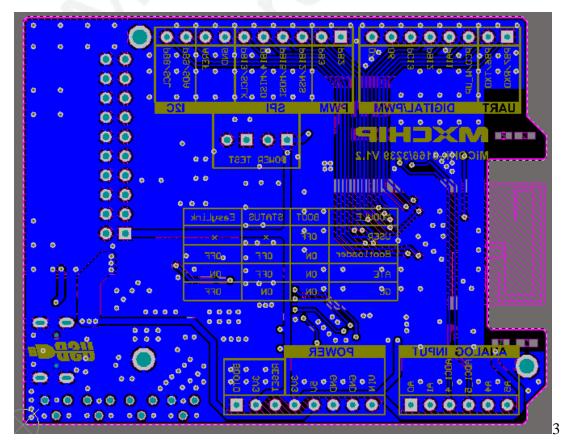



图 2.9 Arduino 接口部分原理图


注意:由于EMW3239的IO数量所限,不是完全兼容Arduino接口,有些脚为空。


2.9. 电路图



3.0 PCB 图纸

[Page 14]

3. MiCOKit-3239 扩展板详解

为了用户快速上手,验证软件相关部分功能,MiCOKit 专门设计了包含各类传感器的扩展板,采用标准的 Arduino 接口,和 MiCOKit Wi-Fi 主板是完美的一套。

MiCOKit 扩展板包括输入和输出各类传感器和执行机构,可以模拟现实折生活中的各类应用,方便进行各类应用的开发。

MiCOKit 扩展板是标准 Arduino 规格的开发板,主要资源有:

- 128x64 OLED 双色显示屏:
- 温湿度传感器,光照强度传感器,距离传感器,红外传感器;
- 8mm RGB 三色 LED, 手机控制色彩和亮度的调节;
- 可调速微型直流电机;
- 2个用户按键;
- 环境传感器,九轴运动传感器(选配);
- 苹果专用 CP 芯片 (选配);
- Arduino 标准接口;
- Arduino 传感器扩展接口;
- UART 调试接口。

MiCOKit扩展板的接插件采用色彩来区分功能,黄色插件是数字信号接口,蓝色插件是模拟信号接口,红色插件是电源接口,和主板一一对应。如图 3.1 所示。

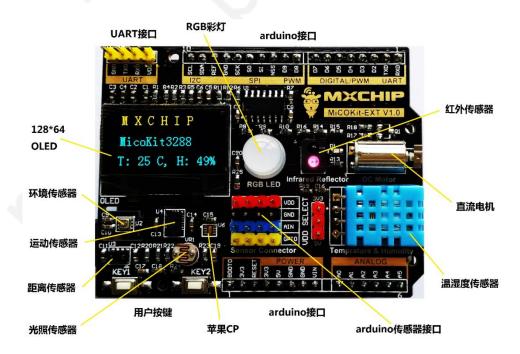


图 3.1 MiCOKit 扩展板功能图

3.1.**OLED** 显示屏

有机发光二极管(Organic Light-Emitting Diode,OLED)具有自发光,不需背光源、对比度高、厚度薄、视角广、反应速度快、可用于挠曲性面板、使用温度范围广、构造及制程较简单等优异之特性,被认为是下一代的平面显示器新兴应用技术。

MiCOKit 采用了一块 0.96 寸、128x64 点阵式、黄蓝双色 OLED 显示屏,上面 128x16 为黄色显示区,下面 128*48 为蓝色显示区。这部分的原理图如图 3.2 所示。该显示屏的特点:

- 高分辨率: 128x64(和 12864LCD 相同分辨率,但该 OLED 屏的单位面积像素点更多);
- 超广可视角度:大于160°;
- 超低功耗:正常显示时 0.06W (远低于 TFT 显示屏);
- 宽供电范围: 直流 3V-5V;
- 工业级:工作温度范围-30℃~70℃;
- 支持多种操作方式: 8位并口、4线 SPI、IIC;
- 带片选 CS 信号,可以实现多个 SPI 或 IIC 设备在同一总线工作;
- 兼容 3.3V 和 5V 控制芯片的 I/O 电平 (无需任何设置,直接兼容);
- 亮度、对比度可以通过程序指令控制;
- 使用寿命不少于 16000 小时;
- OLED 屏幕内部驱动芯片: SSD1306。

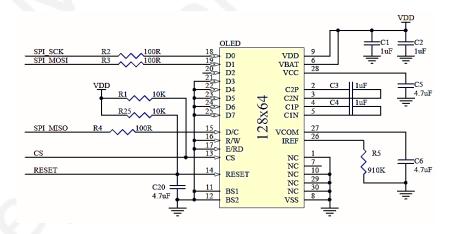


图 3.2 OLED 显示屏电路原理图

3.2.**RGB 三色 LED**

MiCOKit 扩展板设计一个 8mm 直径的 RGB 三色 LED 指示灯,通过 P9813 驱动,可以通过手机等实现对 LED 的全色彩控制。

P9813 是一款全彩点光源 LED 驱动芯片,采用 CMOS 工艺,提供三路恒流驱动及 256 级灰度调制输出。采用双线传输方式(DATA 与 CLK),内建再生,可提升传输距离。用于驱动显示灯光变换、各式字符变换、彩色动漫图案。根据不同控制器和客户不同形式要求,进行脱机或联机运行。该芯片的特点:

● IC 输入电压 5V~6.5V; 内置 LDO , 4.5V 稳压输出;

- 外置单电阻反馈模式,三路驱动,每路驱动电流 0-45mA;
- 带有输入信号校验功能;
- 内置环振(1.2MHz)支持不间断 FREE-RUN 调制输出,维持画面静止功能;
- 最大串行输入数据时钟频率 15MHz;
- 具有信号锁相再生, 1MHz 数据传输速度下级联点光源可达 1024 个;
- LED 驱动端口耐压 17V。

这部分的电路原理如图 3.3 所示。驱动的时序图如图 3.4 所示。

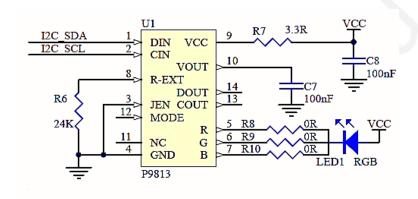


图 3.3 RGB 驱动电路原理图

图 3.4 P8913 驱动时序图

注意:由于 P9813 不是标准的 I^2 C 接口,为了节约 IO,电路连接在 I^2 C 的总线上,但是需要配置为 GPIO,根据时序图来实现调色,调光的功能。

3.3.环境传感器(选配)

MiCOKit 扩展板可选配博世的新款数字环境传感器 BME280,该芯片集成了数字湿度、温度和大气压等三个传感器,封装在一个 2.5x2.5mm 的金属封装内,实现了小体积,低功耗。

BME280 内部的湿度传感器在快速变化的环境中实现迅速的相应,响应时间为 1 秒,在很宽的温度范围内实现高精度(±3%)。压力传感器是一个绝对大气压传感器,具有很高的精度(±0.25%)和分辨率。内置的温度传感器优化了噪声干扰,提高了分辨率,主要用于内部压力传感器和湿度传感器的温度补偿,也可用于环境温度的监测。

BME280 具有标准的 I^2 C(可选 SPI)接口,电路连接比较简单,如图 3.5 所示。

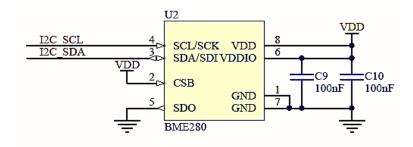


图 3.5 环境传感器电路原理图

3.4. 九轴运动传感器(选配)

MiCOKit 扩展板可选配博世的新款数字九轴运动传感器 BMX055,包含了一个 12 位的三轴加速度传感器,一个 16 位的三轴角速率(陀螺仪)和一个全功能的三轴地磁传感器。加速度传感器的测量范围为: $\pm 2g$ 、 $\pm 4g$ 、 $\pm 8g$ 、 $\pm 16g$; 陀螺仪的监测范围为: ± 125 % 到 ± 2000 %; 磁场的测量典型值为: 1300μ T(X 轴、Y 轴)和 $\pm 2500\mu$ T(Z 轴)。

BMX055 具有标准的 I^2C (可选 SPI) 接口,每一个传感器都有独立的中断功能, 电路连接比较简单,如图 $3.6~\mathrm{Mpc}$ 。

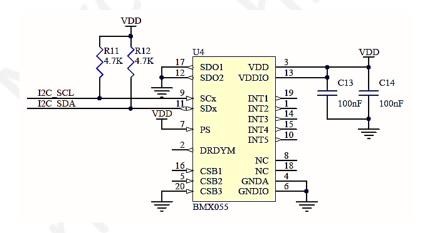


图 3.6 九轴运动传感器电路原理图

3.5.苹果认证芯片(选配)

为了便于苹果 Home Kit 等开发, MiCOKit 板载一个苹果的认证芯片(Apple authentication coprocessor, CP), 用于开发苹果认证的外设。具体的资料和使用方法请咨询苹果公司。

CP 芯片具有标准的 I^2C 接口,电路连接比较简单,如图 3.7.所示。

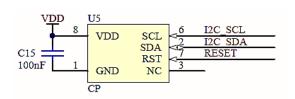


图 3.7 苹果 CP 芯片电路原理图

3.6.距离、光照传感器

MiCOKit 扩展板设计了一个集成型环境亮度和接近传感器 APDS-9930,该传感器在单个 8 引脚封装内提供 I² C 接口兼容的环境亮度传感器(Ambient Light Sensor, ALS)和带有红外 LED 的接近传感器,其中环境亮度传感器使用双光二极管来近似 0.01 lux 照度下低流明性能的人眼视觉反应,提供的高灵敏度使得器件可以在深色玻璃后运作。接近传感器经过完全调校可进行 100 毫米物体检测,免除终端设备和次组件的工厂校准需求。从明亮的阳光照射到黑暗的房间,接近检测功能都能运作良好。模块中加入微光学透镜提供红外能量的高效率传送和接收,可降低总体功耗。另外,内部状态机可使器件进入低功耗模式,带来极低的平均功耗。具有以下特点:

- 集成 ALS、红外 LED 和接近检测器的光学模块;
- 环境亮度感测 (ALS):
 - 1. 近似人眼的视觉反应;
 - 2. 带有上限和下限阈值的可编程中断功能:
 - 3. 高达 16 位分辨率;
 - 4. 深色玻璃后运作的高灵敏度;
 - 5. 0.01lux 低流明性能。
- 接近检测:
 - 6. 完全校准到100毫米检测;
 - 7. 集成红外 LED 和同步 LED 驱动器;
 - 8. 免除接近传感器的工厂校准。
- 可编程等待计时器:
 - 9. 等待状态功耗-90 µA 典型值;
 - 10. 可编程范围为 2.7 毫秒到大于 8 秒。
- I²C 接口兼容:
 - 11. 高达 400kHz;
 - 12. 专用中断引脚。
- 睡眠模式功率-2.2µA 典型值;
- 小型封装 3.94x2.36x1.35 毫米。

APDS-9930 芯片具有标准的 I²C 接口, 电路连接比较简单, 如图 3.8 所示。

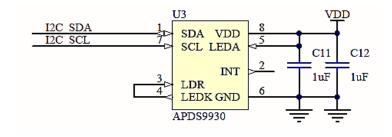


图 3.8 距离、光照检测电路原理图

3.7.温湿度传感器

MiCOKit 扩展板设计了常用的温湿度传感器 DHT11,该传感器是一款含有已校准数字信号输出的温湿度复合传感器。它应用专用的数字模块采集技术和温湿度传感技术,确保产品具有极高的可靠性与卓越的长期稳定性。传感器包括一个电阻式感湿元件和一个 NTC 测温元件,并与一个高性能 MCU 连接。因此该产品具有品质卓越、抗干扰能力强、性价比极高等优点。每个 DHT11 传感器都在极为精确的湿度校验室中进行校准。校准系数以程序的形式储存在 OTP 内存中,传感器内部在检测信号的处理过程中要调用这些校准系数。单线制串行接口,使系统集成变得简易快捷。超小的体积、极低的功耗,信号传输距离可达 20米以上,使其成为各类应用甚至最为苛刻的应用场合的最佳选择。产品为 4 针单排引脚封装。连接方便,特殊封装形式可根据用户需求而提供。

DHT11 数据采用单线制串行接口,电路连接比较简单,如图 3.9 所示。时序图如图 3.10 所示。

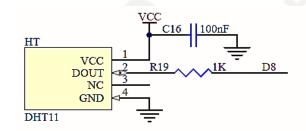


图 3.9 温湿度电路原理图

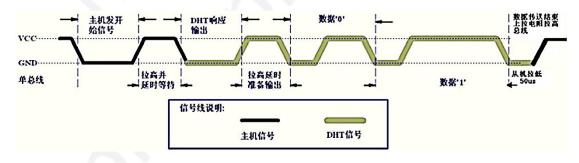


图 3.10 DHT11 时序图

3.8.红外反射开关

用 RPR220 型光电对管, RPR220 是一种一体化反射型光电探测器, 其发射器是 一种砷化镓红外光二极管, 而接收器是一个高灵敏度、硅平面光电三极管, RPR220 采用 DIP4 封装, 其具有如下特点:

- 塑料透镜可以提高灵敏度;
- 体积小、结构紧凑:
- 当发光二极管发出的光发射回来时,三极管导通输出低电平 。此光电二极管调理电路简单,工作性能 稳定。

为了准确监测反射的距离,三极管的集电极接在 ADC 的接口上,通过检测电压的大小检测反射的距离,同时接一个 LED 指示,可以通过 LED 的亮度变化判断粗略距离的远近。这部分的原理图如图 3.11 所

示。

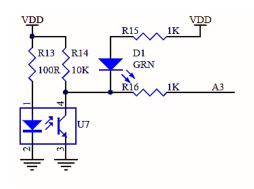


图 3.11 红外反射电路原理图

3.9.光照传感器

MiCOKit 设计了一个专门的光照传感器,采用光敏电阻,光敏电阻器一般用于光的测量、光的控制和光电转换(将光的变化转换为电的变化)。常用的光敏电阻器硫化镉光敏电阻器,它是由半导体材料制成的。光敏电阻器对光的敏感性(即光谱特性)与人眼对可见光(0.4~0.76) μm 的响应很接近,只要人眼可感受的光,都会引起它的阻值变化。设计光控电路时,都用白炽灯泡(小电珠)光线或自然光线作控制光源,使设计大为简化。

光敏电阻是电阻值的变化,可转化为电压的变化,所以接 ADC 的输入来监测电压的变化,就能推算出光线的变化,这部分的原理图如图 3.12 所示。

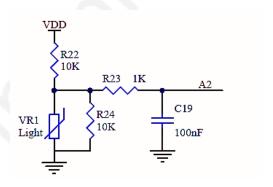


图 3.12 光照传感器电路原理图

注意:由于不同的 MCU 的 ADC 的最大输入电压会不同,所以在光敏电阻并联一个分压电阻,可根据 MCU 最大的 ADC 输入电压来调整电阻值,以达到最佳的效果。

3.10. 微型直流电动机

为了模拟现场的执行机构,MiCOKit 扩展板上设计一个空心杯的电动机,型号是:LX0610C,空心杯电机属于直流、永磁、伺服微特电机。空心杯电动机具有突出的节能特性、灵敏方便的控制特性和稳定的运行特性,作为高效率的能量转换装置,代表了电动机的发展方向。空心杯电机在结构上突破了传统电机的转子结构形式,采用的是无铁芯转子。空心杯电机具有十分突出的节能、控制和拖动特性。

直流电机用一个 NPN 的三极管驱动,简化驱动模式,使用 PWM 信号进行调速,这部分的电路原理图 如图 3.13 所示。

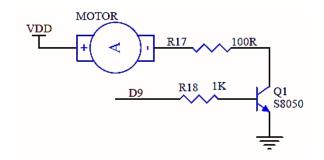


图 3.13 直流电机电路原理图

3.11. 标准 Arduino 接口

MiCOKit 扩展板采用了标准的 Arduino 接口,和 MiCOKit 的主板是无缝链接的,也可以插在任何标准的 Arduino的 MCU 主板中,具体的插脚定义如图 3.14.所示。接插件采用色彩来区分功能,黄色的插件是数字信号接口,蓝色的插件是模拟信号接口,红色的插件是电源接口。

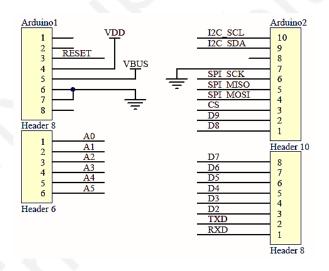


图 3.14 扩展板 Arduino 电路原理图

3.12. Arduino 传感器接口

MiCOKit 扩展板还留有 Arduino 传感器接口,可以外接模拟、数字等多种传感器,并支持 3.3V 和 5V 两种电压规格(通过板上的"VDD SELECT"选择),同时,传感器接口接插件也采用色彩来区分功能,黄色的插件是数字信号接口,蓝色的插件是模拟信号接口,红色的插件是电源接口,黑色的表示地线的接口。这部分的电路如图 3.15 所示。

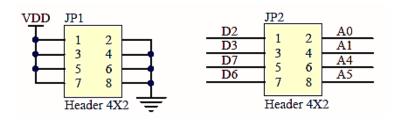


图 3.15. Arduino 传感器接口电路原理图

3.13. **UART接口**

MiCOKit 扩展板预留一个 UART 接口(不是 RS232 接口),方便用户调试和通信。

该部分的电路如图 3.16 所示。

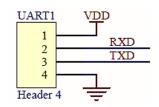


图 3.16 UART 接口电路原理图